

EN AW-6063 ist traditionell eine der am häufigsten verwendeten Legierungen der 6000er-Serie. Sie bietet hohe Festigkeit, gute Korrosionseigenschaften und lässt sich dekorativ anodisieren. Inzwischen wird sie immer häufiger durch EN AW-6060 abgelöst, welche ähnliche Festigkeitseigenschaften aber bessere Eloxalqualität aufweist.

Hauptsächlicher Einsatz für Bauteile mit höheren Festigkeits- und Oberflächenanforderungen, z.B. für Fenster, Haustüren, Geländer sowie im Maschinen- und Fahrzeugbau. Auch für wärmeleitende Aufgaben wie Wärmetauscher und Kühlkörper ist EN AW-6063 geeignet.

Typische Anwendungen

Bauindustrie

Fenster und Türen

• Elektrische Leiter

Kühlkörper

• Zäune, Geländer

Rohrleitungen

 LKW und Anhänger Seitenwände & Böden Leitern und Gerüste

Chemische Zusammensetzung 1

5	Si	F	e	С	u	N	ln	N	lg	C	r	Z	n	7	ï	F	b	Bi	Sn	And	ere
Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max	Max	einzeln	total
0,20	0,60		0,35		0,10		0,10	0,45	0,90		0,10		0,10		0,10					0,05	0,15

¹ Chemische Zusammensetzung gemäß EN-573-3:2013

Mechanische Eigenschaften ^{2,3}

Zustand	Wandicke t [mm]	R _{p0,2} [MPa]	R _m [MPa]	A [%]	A _{50mm} [%]	HBW [©] TYPISCHERWER T
T4ª	t ≤ 25	65	130	14	12	50
T _E	t ≤ 10	130	175	8	6	65
T5	10 < t ≤ 25	110	160	7	5	65
T6ª	t ≤ 10	170	215	8	6	75
100	10 < t ≤ 25	160	195	8	6	75
T64 ^{a b}	t ≤ 15	120	180	12	10	65
T66a	t ≤ 10	200	245	8	6	80
100°	10 < t ≤ 25	180	225	8	6	80

² Eigenschaften gemäß EN 755-2:2016 für stranggepresste Profile, Mindestwerte.

Zustandsbeschreibungen 4

T4	Lösungsgeglüht und kaltausgelagert auf einen weitgehend stabilen Zustand
T5	Abgeschreckt aus der Warmumformtemperatur und warmausgelagert
T6	Lösungsgeglüht und warmausgelagert
T64	Lösungsgeglüht und zur Verbesserung der Formbarkeit nicht vollständig warmausgelagert
T66	Lösungsgeglüht und warmausgelagert – bessere mechanische Eigenschaften als T6 durch spezielle Kontrolle des Verfahrens

⁴Zustände gemäß EN 515:1993

³ Wenn der Querschnitt eines Profil sich aus unterschiedlichen Dicken zusammensetzt, denen verschiedene Werte der mechanischen Eigenschaften zugeordnet sind, gelten die jeweils niedrigsten festgelegten Werte für den gesamten Querschnitt des Profils.

^a Eigenschaften werden durch Abschrecken an der Strangpresse erzielt.

^b Zum Biegen besser geeignet.

e Brinell-Härte nur zur Information. Vickers Härtewerte sind aus Brinell errechnet und sollten als Mittelwerte verstanden werden.

Technologische Eigenschaften 5

Zustand	E-Modul [GPa]	Schubmodul [GPa]	Schmelzbereich [°C]	Dichte [g/cm³]		Spezifische Wärme- kapazität [J/kg·K]	Elektr. Widerstand [nΩm]	Ausdehnungs- koeffizient [10 ⁻⁶ K ⁻¹]
	69	26	615 - 655	2,70		901		23,5
Т6					201		35	

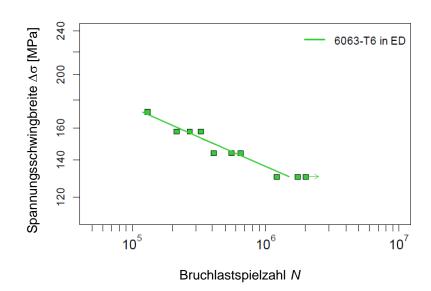
⁵ Quelle: MNC Handbok nr 12, Version 2, SIS, 1989. Typische Eigenschaften bei Raumtemperatur 20°C

Vergleich der Eigenschaften mit verwandten Legierungen ⁶

Eigenschaft	6060	6063	6005	6005A	6082	
Zugfestigkeit	1	2	3	3	4	
Kerbschlagzähigkeit	2	2	1	3	4	
Oberflächenqualität	5	4	3	3	2	
Dekorative Anodisierbarkeit	5	5	4	3	2	
Korrosionsbeständigkeit	5	5	4	4	4	
Zerspanbarkeit	2	3	4	4	5	
Kaltumformbarkeit	5	5	4	4	3	
Schweißbarkeit	5	5	5	5	4	

⁶ Bewertung in Stufen 1 - 5, 5 = am besten

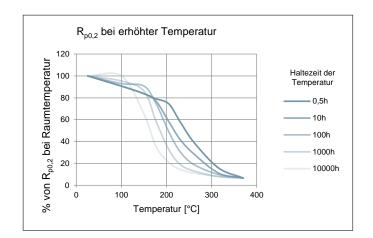
Schwingfestigkeitseigenschaften

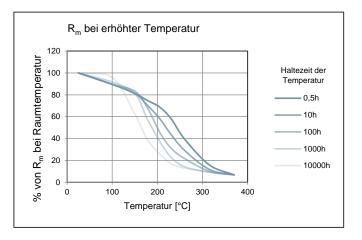

Beispiel der Dauerfestigkeit von EN AW-6063 im Zustand T6. Diese Angaben dienen als Richtlinie und können nicht garantiert werden. Die Ergebnisse gelten für die Proben der untersuchten Muster.

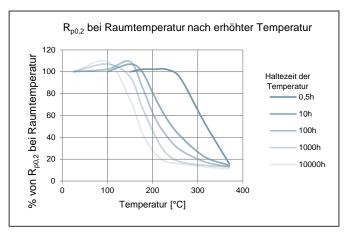
Der Test wurde durchgeführt bei 20 \pm 2 °C an Flachproben parallel zur Pressrichtung des Profils bei Swerim AB, Sweden.

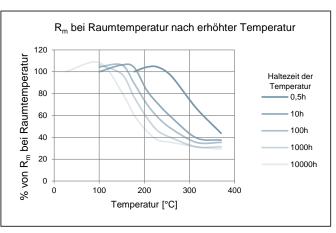
Axiale sinusförmige Schwingbelastung mit konstanter Amplitude bei einer Frequenz von 20-30 Hz.

Spannungsverhältnis (σ_u/σ_o) R = 0.1

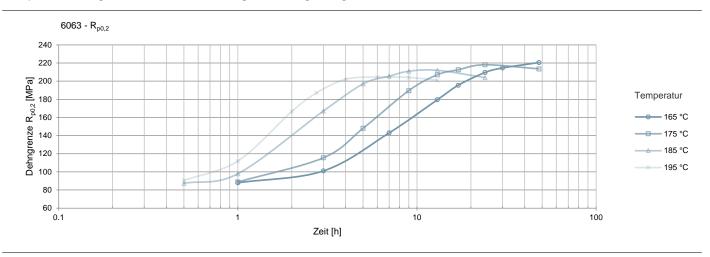

Ausfälle nach 2 Millionen Zyklen sind mit Pfeilen gekennzeichnet.

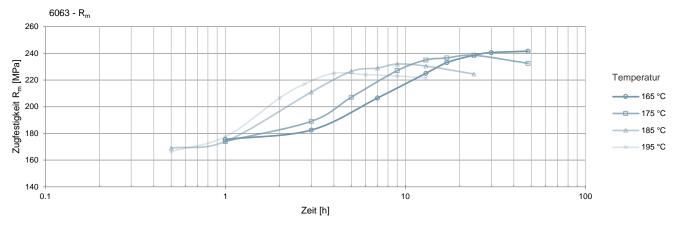


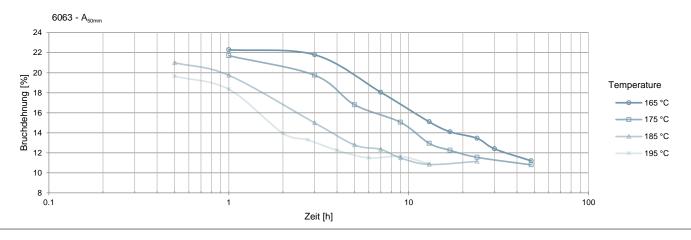



Festigkeitswerte bei erhöhten Temperaturen ⁷

Diese Angaben dienen als Richtlinie und können nicht garantiert werden.






⁷ Quelle: J. Kaufman, Properties of Aluminium alloys -tensile, creep, and fatigue data at high and low temperatures, pp 176, ASM 1999

Verhalten bei der Wärmebehandlung ⁸ Beispiele für mögliche Wärmebehandlungen der Legierung 6063-T6.

⁸ Flachprofil, 200 x 3 mm, luftabgeschreckt an der Presse, vor der Wärmebehandlung 24 h kalt gelagert, Proben in Pressrichtung entnommen